

Fig. 1. Stereodrawing of the molecule (PLUTO; Motherwell \& Clegg, 1978).
(1971). The $\mathrm{C}-\mathrm{S}$ distance $[1.778$ (8) \AA] is longer than the 1.753 (2) \AA in p-toluenesulfonic acid and the 1.755 (3) \AA found by Singh, Tiwari \& Singh (1985), but similar to the 1.766 (7) \AA found by Barrans \& Cotrait (1976).

The N-S bond length [$1.666(6) \AA$] is comparable with the values in the above cited structures. The $\mathrm{O}-\mathrm{S}-\mathrm{O}$ angle in the present structure is $120 \cdot 8(4)^{\circ}$. In p-toluenesulfonic acid and in a number of sulfonate derivatives (Arora \& Sundarlingam, 1971) it ranges from 111 to 114°. In N^{1}-(2,6-dimethyl-4-pyrimidinyl)sulfanilamide (Singh et al., 1985) it equals $115.0(4)^{\circ}$ while in tosyl-L-arginine methyl ester (Barrans \& Cotrait, 1976) it is widened to $121.2(4)^{\circ}$.

There are no unusual intermolecular contacts in the structure.

The authors are indebted to Dr D . Brózda for providing a sample of the compound. The work was supported by Project CPBP.01.12.10.3.(PAN).

References

Arora, S. K. \& Sundarlingam, M. (1971). Acta Cryst. B21, 1293-1298.
Barrans, Y. \& Cotrait, M. (1976). Acta Cryst. B32, 2346-2349. Beurskens, P. T., Bosman, W. P., Doesburg, H. M., van den hark, Th. E. M., Prick, P. A. J., Noordik, J. H., Beurskens, G., Gould, R. O. \& Pathasarathi, V. (1982). Conformation in Biology, edited by R. Srinivasan \& R. Sarma, pp. 398-406. New York: Academic Press.
Duax, W. L. \& Norton, D. A. (1975). In Atlas of Steroid Structure, Vol. 1. New York: Plenum.
Gzella, A., Jaskólski, M., Rychlewska, U. \& Kosturkiewicz, Z. (1984). Acta Cryst. C40, 2098-2100.

International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Jaskólski, M. (1982). Fourth Symposium on Organic Crystal Chemistry, Poznań, September 1982, edited by Z. Kaluski, pp. 70-71. A. Mickiewicz Univ.
Lehmann, M. S. \& Larsen, F. K. (1974). Acta Cryst. A30, 580-584.
Motherwell, W. D. S. \& Clegg, W. (1978). PLUTO. Program for plotting molecular and crystal structures. Univ. of Cambridge, England.
Plywaczyk, M., Tykarska, E., Jaskólski, M. \& Kosturkiewicz, Z. (1984). Acta Cryst. C40, 1107-1109.
Reissert, A. (1905). Ber. Dtsch. Chem. Ges. 38, 1603-1614.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Singh, T. P., Tiwari, R. U. \& Singh, M. (1985). Acta Cryst. C41, 752-755.

Structures of Five trans-2-Hydroxy and trans-2-Methoxy-2-methyl-3,4-dihydro-4-aryl-2H,5H-pyrano[3,2-c]benzopyran-5-ones

By Edward J. Valente
Department of Chemistry, Mississippi College, Clinton, MS 39058, USA
Drake S. EgGleston
Department of Analytical, Physical and Structural Chemistry, Smith, Kline \& French Laboratories, Philadelphia, PA 19101, USA
and Verner Schomaker
Department of Chemistry, University of Washington, Seattle, WA 98195, USA

(Received 15 February 1986; accepted 4 July 1986)

Abstract

Derivatives of 2-methyl-3,4-dihydro-2H,5H-pyrano[3,2-c][1]benzopyran-5-one. (1) Racemic trans-2-methoxy-4-phenyl, $M_{r}=322 \cdot 4$, monoclinic, $P 2_{1} / n$,

$a=5.858$ (1), $b=16.732$ (9), $c=16.383$ (9) $\AA, \beta=$ 94.82 (3) ${ }^{\circ}, V=1600 \cdot 1 \AA^{3}, Z=4, D_{x}=1.338 \mathrm{~g} \mathrm{~cm}^{-3}$, $\lambda($ Мо $K \alpha)=0.71073 \AA, \quad \mu=0.866 \mathrm{~cm}^{-1}, \quad F(000)=$ © 1986 International Union of Crystallography
$680, T=298 \mathrm{~K}$, final $R=0.047$ for 1513 intensities. The trans methyl ketal of warfarin $\left(\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{4}\right)$ contains a half-chair dihydropyran ring distorted toward the d,e-diplanar conformation. (2) Resolved ($2 R, 4 R$)-trans-2-methoxy-4-phenyl, $\quad M_{r}=322.4, \quad$ orthorhombic, $P 2_{1} 2_{1} 2_{1}, \quad a=11.521(1), \quad b=14.061$ (2), $\quad c=$ 10.055 (2) $\AA, \quad V=1628.9 \AA^{3}, \quad Z=4, \quad D_{x}=$ $1.314 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda(\mathrm{Mo} K \alpha)=0.71073 \AA, \quad \mu=$ $0.851 \mathrm{~cm}^{-1}, F(000)=680, T=298 \mathrm{~K}$, final $R=0.056$ for 1660 intensities. The trans methyl ketal $\left(\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{4}\right)$ from $R(+)$-warfarin; its dihydropyran ring is a halfchair distorted toward the d,e-diplanar conformation.
(3) Resolved trans-2-hydroxy-4-(4-methoxyphenyl), $M_{r}=338.4$, orthorhombic, $P 2_{1} 2_{1} 2_{1}, \quad a=10.584$ (1), $b=10.621$ (5), $c=14.778$ (2) $\AA, \quad V=1661 \cdot 2 \AA^{3}, \quad Z$ $=4, \quad D_{x}=1.353 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda(\mathrm{Mo} \mathrm{K} \alpha)=0.71073 \AA, \quad \mu$ $=0.908 \mathrm{~cm}^{-1}, F(000)=712, T=298 \mathrm{~K}$, final $R=$ 0.044 for 1165 unique intensities. Compound $\mathrm{C}_{20}{ }^{-}$ $\mathrm{H}_{18} \mathrm{O}_{5}$ spontaneously resolves on crystallization from acetone and water, and absolute configuration of data specimen was not determined. It has a dihydropyran ring with a half-chair conformation; hydroxyl and lactone carbonyl are intermolecularly H -bonded at $\mathrm{O} \cdots \mathrm{O}=2.79 \AA$. (4) Racemic trans-2-hydroxy-4-(2-methyl-6-methoxyphenyl), $\quad M_{r}=372.4$, monoclinic, $P 2_{1} / n, a=9.637$ (2), $b=14.345$ (4), $c=13.224$ (2) \AA, $\beta=91.09(1)^{\circ}, \quad V=1827.8 \AA^{3}, \quad Z=4, \quad D_{x}=$ $1.353 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Mo $K \alpha)=0.71073 \AA, \quad \mu=$ $0.961 \mathrm{~cm}^{-1}, F(000)=784, T=298 \mathrm{~K}$, final $R=0.048$ for 2339 unique intensities. A synthetic derivative of warfarin, it crystallizes as the hydrate $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{6} \cdot \mathrm{H}_{2} \mathrm{O}$ and has a dihydropyran ring with a half-chair conformation and intermolecular H bonds with $\mathrm{O} \cdots \mathrm{O}$ distances between 2.67 and $2.77 \AA$. (5) Racemic trans-2-hydroxy-4-(4-dimethylaminophenyl), $\quad M_{r}=$ 369.4 , triclinic, $P \overline{1}, a=9.066$ (3), $b=9.509$ (2), c $=12.681$ (3) $\AA, \quad \alpha=98.50$ (2),$\quad \beta=91.25$ (3),$\quad \gamma=$ $116.96(2)^{\circ}, V=958.8 \AA^{3}, Z=2, D_{x}=1.279 \mathrm{~g} \mathrm{~cm}^{-3}$, $\lambda($ Mo $K \alpha)=0.71073 \AA, \quad \mu=0.854 \mathrm{~cm}^{-1}, \quad F(000)=$ 392, $T=298 \mathrm{~K}$, final $R=0.045$ on 2773 unique intensities. A synthetic derivative of warfarin, it also crystallizes as a hydrate, $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$, and has a dihydropyran ring with a half-chair conformation and intermolecular H bonds with $\mathrm{O} \cdots \mathrm{O}$ distances between 2.70 and $3.07 \AA$.

Introduction. Michael-type addition of 4-arylbut-3-en-2-ones to 4 -hydroxycoumarin leads to 3 -substituted

4-hydroxycoumarins which exist in a solution equilibrium with the two diastereomeric cyclic hemiketal forms. Crystals invariably contain the cyclic structure which incorporates a substituted dihydropyran ring. Hemiketals can be converted to the cyclic methyl ketals in acidic methanol. Diastereomeric cis and trans (2-oxygen substituent relative to 4 -substituent) methyl ketal methoxyls are found in axial orientations owing to an operative anomeric effect. The structures of five 4 -aryl analogs of warfarin (2-hydroxy-2-methyl-4-phenyl-3,4-dihydro-2H,5H-pyrano [3,2-c][1]benzo-pyran-5-one) are presented here as part of a study of the conformational flexibility of dihydropyran rings near their ground state. A companion study of 4 -aliphatic warfarin analogs is in preparation.

	R	R^{\prime}
(1)	$\mathrm{C}_{6} \mathrm{H}_{5}$	CH_{3} racemic $(2 R, 4 R ; 2 \mathrm{~S}, 4 \mathrm{~S})$
(2)	$\mathrm{C}_{6} \mathrm{H}_{5}$	CH_{3} resolved $(2 R, 4 R)$
(3)	$p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}$	H
(4)	$0, o-\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{OCH}_{3}\right)\left(\mathrm{CH}_{3}\right)$	H
racelved, spontaneous		
(5)	$p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}^{2}\left(\mathrm{CH}_{3}\right)_{2}$	H
	racemic	

Experimental. Syntheses of hemiketals generally follow reported procedures (Ikawa, Stahmann \& Link, 1944) except for (5) (Bush \& Trager, 1983). The transwarfarin methyl ketal racemic compound (1) was separated from the mixture of diastereomers produced on methylation (Valente, Lingafelter, Porter \& Trager, 1977). Warfarin, $R=\mathrm{C}_{6} \mathrm{H}_{5}, R^{\prime}=\mathrm{H}$, was resolved with quinidine and quinine (West, Preis, Schroeder \& Link, 1961) and the trans- $2 R, 4 R$-methyl ketal (2) was prepared by refluxing $R(+)$ warfarin in acidic methanol, and fractionally crystallizing the product from ethanol. Hemiketal (3) crystallized as a conglomerate as determined by the crystal structure, and spontaneously resolves on crystallization from $1: 1$ water:acetone. Melting points:
(1) 440-3-441.5;
(2) 451-453;
(3) 431-432; (4) 436-438; (5) 376-378 K. D_{m} 's were not measured. Data on the crystallographic specimens and for intensity measurements are given in Table 1. Cell constants were

Table 1. Crystal data, intensity measurements, refinements

Structure	Crystal size (mm)			$\theta_{\max }\left({ }^{\circ}\right.$)	No. unique intensities	No. used	Scale factor	S	$w R$	No. variables
1 (racemic)	0.7	$\times 0.2$	$\times 0.2$	27.5	3674	1513	0.395 (1)	1.42	0.057	289
$2(2 R, 4 R)$	0.4	$\times 0.3$	$\times 0.2$	27.5	2171	1660	0.638 (2)	1.93	0.028	280
3	0.75	$\times 0.2$	$\times 0.2$	28	2268	1165	0.404 (2)	$1 \cdot 16$	0.049	298
4	0.45	$\times 0.45$	$\times 0.2$	30	5331	2339	0.306 (1)	1.32	0.057	333
5	0.6	$\times 0.4$	$\times 0.25$	28	4626	2773	0.155 (1)	1.69	0.062	336

determined by careful centering of 25 [(1),(3)-(5)] or 30 (2) reflections having higher θ 's. Crystal symmetry and space groups were initially assigned from systematic absences; for (1) and (4): $h 0 l, h+l$ odd; $0 k 0, k$ odd; for (2) and (3): $h 00, h$ odd; $0 k 0, k$ odd; $00 l, l$ odd; and they were later confirmed by structure determination. Standard reflections were monitored for orientation and crystal stability, and no unusual trends were seen. Intensities were collected on a CAD-4 diffractometer except for (2) for which data were taken on a Picker FACS-1 instrument. Intensities were corrected for coincidence, polarization and specimen deterioration but not for absorption, and converted to F 's. Associated $\sigma\left(F_{o}\right)$'s are based on counting statistics

Table 2. Positions ($\times 10^{4}$) and $B_{e q}$'s for (1)

For numbering scheme, see Fig. 1; e.s.d.'s in parentheses.$B_{\mathrm{cq}}=\frac{8}{3} \pi^{2} \sum_{l} \sum_{j} U_{l j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j} .$				
	x	y	z	$B_{\text {eq }}\left(\AA^{2}\right)$
O(1)	8673 (4)	287 (1)	1171 (1)	3.54 (5)
O(2)	10198 (4)	-149 (1)	2359 (2)	3.97 (6)
O(3)	3555 (4)	1462 (1)	2244 (1)	$3 \cdot 15$ (5)
$\mathrm{O}(4)$	5871 (4)	2166 (1)	3219 (1)	3.35 (5)
C(2)	8621 (6)	208 (2)	2010 (2)	$3 \cdot 17$ (8)
C(3)	6736 (6)	564 (2)	2396 (2)	2.65 (7)
C(4)	5188 (6)	1015 (2)	1936 (2)	2.84 (7)
C(5)	3576 (7)	1468 (2)	546 (2)	3.66 (8)
C(6)	3736 (7)	1492 (2)	-283 (2)	4.24 (9)
C(7)	5551 (8)	1113 (2)	-617 (2)	4.24 (9)
C(8)	7198 (7)	721 (2)	-133 (2)	3.76 (9)
C(9)	6991 (6)	694 (2)	699 (2)	3.04 (8)
C(10)	5215 (6)	1066 (2)	1054 (2)	2.77 (7)
C(11)	6679 (6)	487 (2)	3315 (2)	2.96 (7)
C(12)	4558 (7)	907 (2)	3586 (2)	3.66 (8)
C(13)	3971 (6)	1659 (2)	3108 (2)	2.95 (7)
C(14)	1781 (7)	2056 (2)	3318 (2)	4.14 (9)
C(15)	5709 (7)	2908 (2)	2781 (2)	4.46 (9)
C(16)	6777 (6)	-373 (2)	3623 (2)	2.83 (7)
C(17)	4992 (6)	-898(2)	3435 (2)	$3 \cdot 57$ (8)
C(18)	5065 (7)	-1663 (2)	3758 (3)	4.30 (9)
C(19)	6913 (7)	-1917 (2)	4255 (2)	4.38 (9)
C(20)	8725 (7)	-1409 (2)	4439 (2)	4.25 (9)
C(21)	8637 (6)	-640 (2)	4120 (2)	3.72 (8)

Table 3. Positions ($\times 10^{4}$) and $B_{e q}$'s for (2)

E.s.d.'s in parentheses.				
	x	y	z	$B_{\text {eq }}\left(\AA^{2}\right)$
O(1)	7739 (1)	4146 (1)	1097 (2)	3.56 (5)
$\mathrm{O}(2)$	6585 (2)	3330 (1)	2425 (2)	4.50 (7)
$\mathrm{O}(3)$	8806 (2)	784 (1)	680 (2)	3.82 (5)
$\mathrm{O}(4)$	10137 (1)	1992 (1)	1101 (1)	$2 \cdot 69$ (5)
C(2)	7531 (2)	3369 (2)	1901 (2)	$3 \cdot 32$ (6)
C(3)	8416 (2)	2651 (2)	2016 (2)	2.74 (7)
C(4)	9343 (2)	2702 (2)	1227 (2)	2.72 (7)
C(5)	10634 (2)	3686 (2)	-261 (2)	3.39 (8)
C(6)	10798 (3)	4525 (2)	-946 (3)	3.76 (9)
C(7)	9934 (3)	5217 (2)	-970 (2)	3.81 (9)
C(8)	8912 (3)	5076 (2)	-300 (2)	3.51 (9)
C(9)	8770 (2)	4249 (2)	418 (2)	2.98 (7)
$\mathrm{C}(10)$	9599 (2)	3540 (2)	446 (2)	2.74 (7)
C(11)	8202 (2)	1852 (2)	2954 (2)	$3 \cdot 21$ (7)
C(12)	9218 (3)	1151 (2)	2888 (3)	3.45 (8)
C(13)	9715 (2)	1057 (2)	1517 (2)	3.05 (7)
C(14)	10773 (3)	422 (2)	1444 (4)	4.06 (9)
C(15)	9091 (4)	731 (3)	-728 (3)	$5 \cdot 4$ (1)
C(16)	8021 (2)	2161 (2)	4392 (2)	$3 \cdot 10$ (9)
C(17)	8766 (3)	2781 (2)	4982 (3)	4.7 (1)
C(18)	8634 (4)	3023 (3)	6329 (4)	5.6 (1)
C(19)	7776 (4)	2634 (3)	7051 (3)	$5 \cdot 5$ (1)
C(20)	7031 (3)	2010 (3)	6479 (3)	$6 \cdot 1$ (1)
C(21)	7150 (3)	1794 (3)	5156 (3)	$5 \cdot 0$ (1)

alone. Data less than three times their estimated standard deviations were marked weak and not used in refinements. A secondary-extinction correction seemed necessary only for (4) and was later applied, g $=2.53(1) \times 10^{-7}$. Structures were discovered with MULTAN (Germain, Main \& Woolfson, 1971). NonH -atom positions were refined with $U_{\text {iso }}$'s by full-matrix least squares, then with their $U_{i j}$'s. H atoms were refined from calculated positions with their $U_{\text {iso }}$'s. Least-squares weights were taken as $4 F_{o}^{2} / \sigma^{2}(I)$ where $\sigma^{2}(I)=\sigma^{2}\left(I_{c}+p(I)_{c}^{2}\right.$ as defined by Corfield, Doedens \& Ibers (1967); $p=0.05$. Scattering factors from

Table 4. Positions ($\times 10^{4}$) and $B_{e q}$'s for (3)
E.s.d.'s in parentheses.

	x	y	z	$B_{\text {eq }}\left(\AA^{2}\right)$
O(1)	6697 (3)	8601 (2)	7143 (2)	$3 \cdot 88$ (7)
$\mathrm{O}(2)$	7586 (3)	10437 (3)	7310 (2)	4.73 (7)
$\mathrm{O}(3)$	9980 (3)	6999 (3)	6230 (2)	$3 \cdot 62$ (6)
O(4)	11498 (3)	7807 (3)	7194 (2)	$4 \cdot 12$ (7)
O(18)	8824 (3)	13924 (3)	4224 (3)	$5 \cdot 48$ (8)
C(2)	7732 (4)	9369 (4)	7041 (3)	3.31 (9)
C(3)	8861 (4)	8860 (4)	6653 (3)	2.78 (8)
C(4)	8935 (4)	7593 (4)	6501 (3)	2.89 (9)
C(5)	7814 (5)	5505 (4)	6411 (3)	4.1 (1)
C(6)	6693 (5)	4857 (4)	6476 (3)	4.7 (1)
$\mathrm{C}(7)$	5621 (5)	5434 (5)	6753 (4)	4.9 (1)
$\mathrm{C}(8)$	5621 (4)	6683 (4)	6977 (3)	$4 \cdot 2$ (1)
C(9)	6729 (4)	7342 (4)	6898 (3)	$3 \cdot 32$ (9)
$\mathrm{C}(10)$	7842 (4)	6795 (4)	6613 (3)	3.02 (9)
C(11)	9961 (4)	9731 (4)	6457 (3)	3.02 (9)
$\mathrm{C}(12)$	10966 (4)	9015 (4)	5926 (3)	$3 \cdot 8$ (1)
C(13)	11184 (4)	7702 (4)	6293 (3)	3.35 (9)
C(15)	9595 (4)	10895 (4)	5914 (3)	3.01 (8)
C(16)	8719 (5)	10850 (4)	5229 (4)	$4 \cdot 5$ (1)
C(17)	8478 (5)	11858 (5)	4680 (4)	5.0 (1)
C(18)	9142 (4)	12960 (4)	4801 (3)	$3 \cdot 6$ (1)
C(19)	10029 (5)	13032 (4)	5463 (3)	$4 \cdot 3$ (1)
C (20)	10256 (4)	12002 (4)	6015 (3)	3.9 (1)
C(21)	9652 (6)	14953 (5)	4169 (4)	5.7 (1)
C(22)	12097 (5)	6927 (4)	5745 (3)	4.5 (1)

Table 5. Positions ($\times 10^{4}$) and $B_{e q}$'s for (4)
E.s.d.'s in parentheses.

\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	$B_{\mathrm{eq}}\left(\AA^{2}\right)$
$4915(2)$	$-379(1)$	$3331(1)$	$3 \cdot 63(4)$
$4008(2)$	$278(1)$	$1975(2)$	$4 \cdot 93(5)$
$8735(2)$	$785(1)$	$2817(1)$	$3 \cdot 31(3)$
$9121(2)$	$657(1)$	$1107(1)$	$3 \cdot 95(4)$
$5580(2)$	$2492(1)$	$3122(1)$	$4 \cdot 38(4)$
$1694(2)$	$58(2)$	$756(2)$	$7 \cdot 81(6)$
$5030(3)$	$208(2)$	$2514(2)$	$3 \cdot 21(5)$
$6325(2)$	$679(2)$	$2362(2)$	$2 \cdot 73(5)$
$7445(2)$	$442(2)$	$2936(2)$	$2 \cdot 67(4)$
$8427(3)$	$-453(2)$	$4415(2)$	$3 \cdot 24(5)$
$8197(3)$	$-998(2)$	$5251(2)$	$3 \cdot 82(6)$
$6880(3)$	$-1308(2)$	$5460(2)$	$3 \cdot 77(6)$
$5789(3)$	$-1101(2)$	$4816(2)$	$3 \cdot 67(5)$
$6019(2)$	$-556(2)$	$3969(2)$	$2 \cdot 95(5)$
$7328(2)$	$-203(2)$	$3771(2)$	$2 \cdot 61(4)$
$6423(2)$	$1392(2)$	$1520(2)$	$3 \cdot 17(5)$
$7788(3)$	$1930(2)$	$1656(2)$	$3 \cdot 64(6)$
$9005(2)$	$1304(2)$	$1883(2)$	$3 \cdot 02(5)$
$10347(3)$	$1809(2)$	$2099(2)$	$4 \cdot 16(6)$
$5223(3)$	$2076(2)$	$1419(2)$	$3 \cdot 21(5)$
$4522(3)$	$2192(2)$	$490(2)$	$3 \cdot 88(6)$
$3536(3)$	$2902(2)$	$392(2)$	$4 \cdot 79(7)$
$3214(3)$	$3462(2)$	$1197(3)$	$4 \cdot 96(7)$
$3867(3)$	$3342(2)$	$2117(2)$	$4 \cdot 51(6)$
$4873(3)$	$2652(2)$	$2223(2)$	$3 \cdot 60(5)$
$5558(4)$	$3206(2)$	$3871(3)$	$6 \cdot 19(9)$
$4812(3)$	$1587(3)$	$-405(2)$	$5 \cdot 70(8)$

Table 6. Positions ($\times 10^{4}$) and $B_{e q}$'s for (5)
E.s.d.'s in parentheses.

	x	y	z	$B_{\text {eq }}\left(\AA^{2}\right)$
O(1)	7744 (1)	1980 (1)	6217 (1)	3.52 (3)
$\mathrm{O}(2)$	9068 (2)	4574 (2)	6290 (1)	4.20 (4)
$\mathrm{O}(3)$	3526 (1)	2164 (1)	7153 (1)	$3 \cdot 35$ (3)
$\mathrm{O}(4)$	3456 (2)	3960 (1)	6125 (1)	3.70 (3)
$\mathrm{O}(\mathrm{W})$	625 (2)	2817 (2)	4805 (1)	5.55 (4)
$\mathrm{N}(1)$	12479 (2)	9545 (2)	10041 (2)	4.67 (5)
C(2)	7804 (2)	3465 (2)	6475 (2)	$3 \cdot 12$ (4)
C(3)	6413 (2)	3573 (2)	6918 (1)	2.77 (4)
C(4)	4975 (2)	2203 (2)	6905 (1)	2.77 (4)
C(5)	3474 (2)	-807 (2)	6600 (2)	$3 \cdot 70$ (5)
C(6)	3519 (3)	-2241 (2)	6277 (2)	$4 \cdot 40$ (5)
C(7)	4952 (3)	-2248 (2)	5932 (2)	4.32 (5)
C(8)	6364 (2)	-838 (2)	5919 (2)	3.82 (5)
C(9)	6318 (2)	589 (2)	6256 (2)	$3 \cdot 14$ (4)
$\mathrm{C}(10)$	4896 (2)	641 (2)	6589 (1)	2.86 (4)
C(11)	6548 (2)	5219 (2)	7280 (2)	3.01 (4)
C(12)	4979 (2)	5019 (2)	7810 (2)	3.52 (4)
C(13)	3430 (2)	3678 (2)	7165 (2)	$3 \cdot 23$ (4)
C(14)	8102 (2)	6350 (2)	8024 (2)	3.00 (4)
C(15)	8627 (3)	5896 (2)	8883 (2)	3.96 (5)
C(16)	10043 (3)	6939 (2)	9559 (2)	4.09 (5)
C(17)	11006 (2)	8512 (2)	9400 (2)	3.44 (4)
C(18)	10437 (3)	8982 (2)	8557 (2)	$3 \cdot 58$ (5)
C(19)	9025 (2)	7916 (2)	7883 (2)	3.34 (4)
C(20)	13351 (3)	11186 (3)	9892 (2)	$5 \cdot 18$ (6)
C(21)	12793 (3)	9204 (3)	11057 (2)	5.99 (7)
C(22)	1830 (2)	3388 (3)	7638 (2)	$4 \cdot 52$ (5)

International Tables for X-ray Crystallography (1974) except for H (Stewart, Davidson \& Simpson, 1965). In all cases final $\Delta / \sigma_{\text {ave, max }}$ were less than $0.05,0.20$ respectively and positive excursions were less than $0.3 \mathrm{e} \AA^{-3}$, no troughs were less than $-0.207 \mathrm{e} \AA^{-3}$.

Discussion. Final atom positions and vibrational parameters are given in Tables 2-6.*

No close intermolecular contacts are seen in (1) and (2). Structure (1) is the racemic compound ($2 R$,$4 R ; 2 S, 4 S)$, (2) is chiral $(2 R, 4 R)$. The racemate has a lower cell volume, higher density but a lower melting point compared with the resolved compound, pointing to differences in the crystal packing between them. Intermolecular hydrogen bonding is found in (3)-(5). Hemiketal hydroxyls and coumarin carbonyls are H -bonded in (3), $\mathrm{O} \cdots \mathrm{O} 2.795(5) \AA$. The water of crystallization in each of (4) and (5) donates two H bonds and accepts one H bond. In (4), the hemiketal hydroxyl is H -bonded to water, $\mathrm{O} \cdots \mathrm{O} 2.673$ (3) \AA, which H-bonds to a carbonyl oxygen and to a hemiketal hydroxyl oxygen in neighboring molecules, O...O 2.745 (3), 2.769 (3) \AA, respectively. In (5), the hemiketal hydroxyl is also H -bonded to water, $\mathrm{O} \cdots \mathrm{O}$ 2.705 (2) \AA, which H-bonds to a carbonyl oxygen and more weakly to a coumarin ring oxygen in neighboring molecules, $\mathrm{O} \cdots \mathrm{O} 2.927$ (2), 3.067 (2) \AA, respectively.

[^0]All five structures have the 2-oxygen trans to the 4 -aryl substituent, and the hydroxyl or methoxyl is axial (anomeric effect). Hemiketal hydroxyl H's and ketal methyls are gauche synclinal to the dihydropyran oxygen and directed exo to the ring (exoanomeric effect). Ring (hemi)ketal $\mathrm{C}-\mathrm{O}$ bonds are longer ($1.45-1.47 \AA$) than found in sugars ($1.42-1.43 \AA$); the ring unsaturation widens two intraring angles and modifies closure geometry relative to a saturated heterocycle. Phenyl ring substituents are pseudoequatorially disposed on the dihydropyran ring and phenyl rings are inclined relative to coumarin ring planes to avoid close contacts. Extent of the inclination ranges from 71° (dihedral angle) in (3) to 98° in (4). See Figs. 1 to 5 for ellipsoid plots of the molecular structures.

Fig. I. An ellipsoid plot of (1), showing the numbering scheme.

Fig. 2. An ellipsoid plot of (2).

Fig. 3. An ellipsoid plot of (3).

Fig. 4. An ellipsoid plot of (4).

Table 7. Torsion angles $\left(^{\circ}\right)$ in the dihydropyran rings
E.s.d.'s are at most about 0.5°; common configuration.

	a	b	c	d	e	f
(1)	-50.2	$59 \cdot 5$	-36.6	$5 \cdot 7$	$3 \cdot 5$	20.0
(2)	-51.9	$60 \cdot 4$	-.35.3	$2 \cdot 0$	$6 \cdot 3$	20.1
(3)	-45.2	$60 \cdot 3$	-42.9	10.7	$4 \cdot 6$	13.9
(4)	-42.1	59.3	-45.4	15.2	1.4	12.8
(5)	-44.3	$63 \cdot 6$	-48.3	$16 \cdot 0$	$3 \cdot 6$	11.3

Fig. 5. An ellipsoid plot of (5).

A 3,4-dihydro- $2 H$-pyran ring is embedded in each structure. The unsaturation is part of the coumarin ring and other ring substituents are 2-methyl, 2-hydroxyl or methoxyl, and 4-aryl. Rings in both (1) and (2) are half chairs strongly distorted toward the d,e-diplanar forms, (3)-(5) are essentially half-chairs. Intraring torsion angles are given in Table 7.

Thanks go to B. D. Santarsiero and A. Aruffo for experimental assistance early in this project. We
also gratefully thank the Southern Regional Education Board, the Departments of Chemistry at the University of North Carolina and University of Washington and especially Dr D. J. Hodgson and Dr E. C. Lingafelter. A portion of this work was supported by a grant from the American Heart Association (Mississippi Affiliate) \#MS-84-G-3.

References

Bush, E. \& Trager, W. F. (1983). J. Pharm. Sci. 72, 830-831.
Corfield, P. W. R., Doedens, R. J. \& Ibers, J. A. (1967). Inorg. Chem. 6, 197-204.
Germain, G., Main, P. \& Woolfson, M. M. (1971). Acta Cryst. A27, 368-376.
Ikawa, M., Stahmann, M. \& Link, K. P. (1944). J. Am. Chem. Soc. 66, 902-906.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.
Valente, E. J., Lingafelter, E. C., Porter, W. R. \& Trager, W. F. (1977). J. Med. Chem. 20, 1489-1493.

West, B. D., Preis, S., Schroeder, C. \& Link, K. P. (1961). J. Am. Chem. Soc. 83, 2676-2679.

Structure Redetermination of \boldsymbol{m}-Nitroaniline and Structure Determination of \boldsymbol{m}-Nitroaniline Hydrochloride

By G. Ploug-Sørensen and E. Krogh Andersen
Department of Chemistry, Odense University, Campusvej 55, DK-5230 Odense M, Denmark

(Received 27 January 1986; accepted 4 July 1986)

$=0.71069 \AA, \mu=12 \mathrm{~mm}^{-1}, F(000)=288, T=295 \mathrm{~K}$. $R=0.037$ for 769 reflexions. The m-nitroaniline molecules are held together by van der Waals forces. The benzene ring is planar; the two N atoms are out of © 1986 International Union of Crystallography

[^0]: * Lists of structure factors, anisotropic vibrational amplitudes and H -atom positions have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 43210 (109 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

